跟煎鱼学 Go
  • Introduction
  • 第1课 杂谈
    • 1.1 聊一聊,Go 的相对路径问题
    • 1.2 Go 的 fake-useragent 了解一下
    • 1.3 用 Go 来了解一下 Redis 通讯协议
    • 1.4 使用 Gomock 进行单元测试
    • 1.5 在 Go 中恰到好处的内存对齐
    • 1.6 来,控制一下 goroutine 的并发数量
    • 1.7 for-loop 与 json.Unmarshal 性能分析概要
    • 1.8 简单围观一下有趣的 //go: 指令
    • 1.9 我要在栈上。不,你应该在堆上
    • 1.10 defer 会有性能损耗,尽量不要用
    • 1.11 从实践到原理,带你参透 gRPC
    • 1.12 Go1.13 defer 的性能是如何提高的?
    • 1.13 Go 应用内存占用太多,让排查?(VSZ篇)
    • 1.14 干货满满的 Go Modules 和 goproxy.cn
  • 第2课 包管理
    • 2.1 Go依赖管理工具dep
    • 2.2 如此,用dep获取私有库
  • 第3课 gin
    • 3.1 Golang 介绍与环境安装
    • 3.2 Gin搭建Blog API's (一)
    • 3.3 Gin搭建Blog API's (二)
    • 3.4 Gin搭建Blog API's (三)
    • 3.5 使用JWT进行身份校验
    • 3.6 编写一个简单的文件日志
    • 3.7 优雅的重启服务
    • 3.8 为它加上Swagger
    • 3.9 将Golang应用部署到Docker
    • 3.10 定制 GORM Callbacks
    • 3.11 Cron定时任务
    • 3.12 优化配置结构及实现图片上传
    • 3.13 优化你的应用结构和实现Redis缓存
    • 3.14 实现导出、导入 Excel
    • 3.15 生成二维码、合并海报
    • 3.16 在图片上绘制文字
    • 3.17 用Nginx部署Go应用
    • 3.18 Golang交叉编译
    • 3.19 请入门 Makefile
  • 第4课 grpc
    • 4.1 gRPC及相关介绍
    • 4.2 gRPC Client and Server
    • 4.3 gRPC Streaming, Client and Server
    • 4.4 TLS 证书认证
    • 4.5 基于 CA 的 TLS 证书认证
    • 4.6 Unary and Stream interceptor
    • 4.7 让你的服务同时提供 HTTP 接口
    • 4.8 对 RPC 方法做自定义认证
    • 4.9 gRPC Deadlines
    • 4.10 分布式链路追踪
  • 第5课 grpc-gateway
    • 5.1 介绍与环境安装
    • 5.2 Hello World
    • 5.3 Swagger了解一下
    • 5.4 能不能不用证书?
  • 第6课 常用关键字
    • 6.1 panic and recover
    • 6.2 defer
  • 第7课 数据结构
    • 7.1 slice
    • 7.2 slice:最大容量大小是怎么来的
    • 7.3 map:初始化和访问元素
    • 7.4 map:赋值和扩容迁移
    • 7.5 map:为什么遍历 map 是无序的
  • 第8课 标准库
    • 8.1 fmt
    • 8.2 log
    • 8.3 unsafe
  • 第9课 工具
    • 9.1 Go 大杀器之性能剖析 PProf
    • 9.2 Go 大杀器之跟踪剖析 trace
    • 9.3 用 GODEBUG 看调度跟踪
    • 9.4 用 GODEBUG 看GC
  • 第10课 爬虫
    • 9.1 爬取豆瓣电影 Top250
    • 9.2 爬取汽车之家 二手车产品库
    • 9.3 了解一下Golang的市场行情
Powered by GitBook
On this page
  • 前言
  • 错误示例
  • unsafe
  • Pointer
  • Offsetof
  • 错误示例
  • 总结

Was this helpful?

  1. 第8课 标准库

8.3 unsafe

Previous8.2 logNext第9课 工具

Last updated 5 years ago

Was this helpful?

在上一篇文章中,大家会发现其底层数据结构使用了 unsafe.Pointer。因此想着再介绍一下其关联知识

前言

在大家学习 Go 的时候,肯定都学过 “Go 的指针是不支持指针运算和转换” 这个知识点。为什么呢?

首先,Go 是一门静态语言,所有的变量都必须为标量类型。不同的类型不能够进行赋值、计算等跨类型的操作。那么指针也对应着相对的类型,也在 Compile 的静态类型检查的范围内。同时静态语言,也称为强类型。也就是一旦定义了,就不能再改变它

错误示例

func main(){
    num := 5
    numPointer := &num

    flnum := (*float32)(numPointer)
    fmt.Println(flnum)
}

输出结果:

# command-line-arguments
...: cannot convert numPointer (type *int) to type *float32

在示例中,我们创建了一个 num 变量,值为 5,类型为 int。取了其对于的指针地址后,试图强制转换为 *float32,结果失败...

unsafe

针对刚刚的 “错误示例”,我们可以采用今天的男主角 unsafe 标准库来解决。它是一个神奇的包,在官方的诠释中,有如下概述:

  • 围绕 Go 程序内存安全及类型的操作

  • 很可能会是不可移植的

  • 不受 Go 1 兼容性指南的保护

简单来讲就是,不怎么推荐你使用。因为它是 unsafe(不安全的),但是在特殊的场景下,使用了它。可以打破 Go 的类型和内存安全机制,让你获得眼前一亮的惊喜效果 😄

Pointer

为了解决这个问题,需要用到 unsafe.Pointer。它表示任意类型且可寻址的指针值,可以在不同的指针类型之间进行转换(类似 C 语言的 void * 的用途)

其包含四种核心操作:

  • 任何类型的指针值都可以转换为 Pointer

  • Pointer 可以转换为任何类型的指针值

  • uintptr 可以转换为 Pointer

  • Pointer 可以转换为 uintptr

在这一部分,重点看第一点、第二点。你再想想怎么修改 “错误示例” 让它运行起来?

func main(){
    num := 5
    numPointer := &num

    flnum := (*float32)(unsafe.Pointer(numPointer))
    fmt.Println(flnum)
}

输出结果:

0xc4200140b0

在上述代码中,我们小加改动。通过 unsafe.Pointer 的特性对该指针变量进行了修改,就可以完成任意类型(*T)的指针转换

需要注意的是,这时还无法对变量进行操作或访问。因为不知道该指针地址指向的东西具体是什么类型。不知道是什么类型,又如何进行解析呢。无法解析也就自然无法对其变更了

Offsetof

在上小节中,我们对普通的指针变量进行了修改。那么它是否能做更复杂一点的事呢?

type Num struct{
    i string
    j int64
}

func main(){
    n := Num{i: "EDDYCJY", j: 1}
    nPointer := unsafe.Pointer(&n)

    niPointer := (*string)(unsafe.Pointer(nPointer))
    *niPointer = "煎鱼"

    njPointer := (*int64)(unsafe.Pointer(uintptr(nPointer) + unsafe.Offsetof(n.j)))
    *njPointer = 2

    fmt.Printf("n.i: %s, n.j: %d", n.i, n.j)
}

输出结果:

n.i: 煎鱼, n.j: 2

在剖析这段代码做了什么事之前,我们需要了解结构体的一些基本概念:

  • 结构体的成员变量在内存存储上是一段连续的内存

  • 结构体的初始地址就是第一个成员变量的内存地址

  • 基于结构体的成员地址去计算偏移量。就能够得出其他成员变量的内存地址

再回来看看上述代码,得出执行流程:

  • 修改 n.i 值:i 为第一个成员变量。因此不需要进行偏移量计算,直接取出指针后转换为 Pointer,再强制转换为字符串类型的指针值即可

  • 修改 n.j 值:j 为第二个成员变量。需要进行偏移量计算,才可以对其内存地址进行修改。在进行了偏移运算后,当前地址已经指向第二个成员变量。接着重复转换赋值即可

需要注意的是,这里使用了如下方法(来完成偏移计算的目标):

1、uintptr:uintptr 是 Go 的内置类型。返回无符号整数,可存储一个完整的地址。后续常用于指针运算

type uintptr uintptr

2、unsafe.Offsetof:返回成员变量 x 在结构体当中的偏移量。更具体的讲,就是返回结构体初始位置到 x 之间的字节数。需要注意的是入参 ArbitraryType 表示任意类型,并非定义的 int。它实际作用是一个占位符

func Offsetof(x ArbitraryType) uintptr

在这一部分,其实就是巧用了 Pointer 的第三、第四点特性。这时候就已经可以对变量进行操作了 😄

错误示例

func main(){
    n := Num{i: "EDDYCJY", j: 1}
    nPointer := unsafe.Pointer(&n)
    ...

    ptr := uintptr(nPointer)
    njPointer := (*int64)(unsafe.Pointer(ptr + unsafe.Offsetof(n.j)))
    ...
}

这里存在一个问题,uintptr 类型是不能存储在临时变量中的。因为从 GC 的角度来看,uintptr 类型的临时变量只是一个无符号整数,并不知道它是一个指针地址

因此当满足一定条件后,ptr 这个临时变量是可能被垃圾回收掉的,那么接下来的内存操作,岂不成迷?

总结

简洁回顾两个知识点。第一是 unsafe.Pointer 可以让你的变量在不同的指针类型转来转去,也就是表示为任意可寻址的指针类型。第二是 uintptr 常用于与 unsafe.Pointer 打配合,用于做指针运算,巧妙地很

最后还是那句,没有特殊必要的话。是不建议使用 unsafe 标准库,它并不安全。虽然它常常能让你眼前一亮 👌

《深入理解 Go Slice》